BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways.
نویسندگان
چکیده
Photomorphogenesis is controlled by multiple signaling pathways, including the light and brassinosteroid (BR) pathways. BR signaling activates the BZR1 transcription factor, which is required for suppressing photomorphogenesis in the dark. We identified a suppressor of the BR hypersensitive mutant bzr1-1D and named it bzr1-1D suppressor1-Dominant (bzs1-D). The bzs1-D mutation was caused by overexpression of a B-box zinc finger protein BZS1, which is transcriptionally repressed by BZR1. Overexpression of BZS1 causes de-etiolation in the dark, short hypocotyls in the light, reduced sensitivity to BR treatment, and repression of many BR-activated genes. Knockdown of BZS1 by co-suppression partly suppressed the short hypocotyl phenotypes of BR-deficient or insensitive mutants. These results support that BZS1 is a negative regulator of BR response. BZS1 overexpressors are hypersensitive to different wavelengths of light and loss of function of BZS1 reduces plant sensitivity to light and partly suppresses the constitutive photomorphogenesis 1 (cop1) mutant in the dark, suggesting a positive role in light response. BZS1 protein accumulates at an increased level after light treatment of dark-grown BZS1-OX plants and in the cop1 mutants, and BZS1 interacts with COP1 in vitro, suggesting that light regulates BZS1 through COP1-mediated ubiquitination and proteasomal degradation. These results demonstrate that BZS1 mediates the crosstalk between BR and light pathways.
منابع مشابه
CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction.
Active brassinosteroids, such as brassinolide (BL) and castasterone, are growth promoting plant hormones. An Arabidopsis cytochrome p450 monooxygenase encoded by CYP72B1 has been implicated in brassinosteroid catabolism as well as photomorphogenesis. We expressed CYP72B1 in yeast, coupled with brassinosteroid feeding, and established the biochemical function to be the hydroxylation of BL and ca...
متن کاملA brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism.
The phototropic response of Arabidopsis (Arabidopsis thaliana) is induced by the phototropin photoreceptors and modulated by the cryptochrome and phytochrome photoreceptors. Downstream of these photoreceptors, asymmetric lateral redistribution of auxin underlies the differential growth, which results in phototropism. Historical physiological evidence and recent analysis of hormone-induced gene ...
متن کاملThe F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis.
Light is vital for plant growth and development. To respond to ambient light signals, plants are equipped with an array of photoreceptors, including phytochromes that sense red (R)/far-R (FR) regions and cryptochromes and phototropins that respond to the ultraviolet-A/blue (B) region of the light spectrum, respectively. Several positively and negatively acting components in light-signaling path...
متن کاملBoth PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways.
Arabidopsis (Arabidopsis thaliana) seedlings undergo photomorphogenesis in the light and etiolation in the dark. Light-activated photoreceptors transduce the light signals through a series of photomorphogenesis promoting or repressing factors to modulate many developmental processes in plants, such as photomorphogenesis and shade avoidance. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a conserved R...
متن کاملPICKLE is a repressor in seedling de-etiolation pathway.
Light plays a vital role in seedling de-etiolation during which it remarkably inhibits hypocotyl growth and promotes cotyledon opening and the synthesis of chlorophyll and anthocyanin. After light perception, photoreceptors act to repress two main branches of the light signaling, PIFs and COP1-HY5. We recently identified PKL/EPP1, a chromatin remodeling factor, as a new component in regulating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2012